A generalized theory for current-source density analysis in brain tissue
نویسندگان
چکیده
The current-source density analysis is a widely used method in brain electrophysiology, but this method rests on a series of assumptions, namely that current sources are exclusively made by dipoles, and that the surrounding medium is resistive and uniform. Because of these assumptions, this standard model cannot be used to estimate the contributions of monopolar sources or of non-resistive aspects of the extracellular medium. We propose here a general framework to model electric fields and potentials resulting from current source densities, without relying on such assumptions. We develop a mean-field formalism which is a generalization of the standard model, and which can directly incorporate non-resistive (non-ohmic) properties of the extracellular medium, such as ionic diffusion effects. This formalism recovers the classic results of the standard model such as the current-source density (CSD) analysis, but in addition, we provide expressions to generalize the CSD approach to situations with non-resistive media and arbitrarily complex multipolar configurations of current sources. We found that the power spectrum of the signal contains the signature of the nature of current sources and medium, which provides a direct way to estimate those properties from experimental data, and in particular, estimate the possible contribution of electric monopoles.
منابع مشابه
Generalized theory for current-source-density analysis in brain tissue.
The current-source density (CSD) analysis is a widely used method in brain electrophysiology, but this method rests on a series of assumptions, namely that the surrounding extracellular medium is resistive and uniform, and in some versions of the theory, that the current sources are exclusively made by dipoles. Because of these assumptions, this standard model does not correctly describe the co...
متن کاملQuantitative Comparison of Analytical solution and Finite Element Method for investigation of Near-Infrared Light Propagation in Brain Tissue Model
Introduction: Functional Near-Infrared Spectroscopy (fNIRS) is an imaging method in which light source and detector are installed on the head; consequently, re-emission of light from human skin contains information about cerebral hemodynamic alteration. The spatial probability distribution profile of photons penetrating tissue at a source spot, scattering into the tissue, and being released at ...
متن کاملStudy of Different Tissue Density Effects on the Dose Distribution of a 103Pd Brachytherapy Source Model MED3633
Introduction: Clinical application of encapsulated radioactive brachytherapy sources has a major role in cancer treatment. In the present research, the effects of different tissue densities on the dose distribution of a 103Pd brachytherapy source in a spherical phantom of 50 cm radius have been studied. Material and Methods: As is well known, absorbed dose in tissue depends to its density, but ...
متن کاملElectronic transport in Si and Au monoatomic chains considering strongly correlation effect, a first principle study
We have investigated structure and electronic properties of Au and Si liner chains using the firstprinciplesplane wave pseudopotential method. The transport properties and conductance of these twoliner chains are studied using Landauer approaches based on density functional theory (DFT). Weobtain density of states and band gap using Kohn-Sham and Wannier functions as well as quantumconductivity...
متن کاملBiomechanical Analysis of CNS Gray Matter in Tension and Compression
The purpose of this study is to survey cross section changes of the animal brain samples during the tension and compression tests and comparison of the experimental results for three animals: bovine, sheep, and rabbit. A linear elastic theory with considering the necking in tension and barreling in compression has been considered for brain tissue. Bridgman method for tension and cross section u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011